

Low-Cost Compressive Load Cell

With IN-LINE amplifier

Model 8532

Code:	8532 EN
Delivery:	ex stock
Warranty:	24 months

- Measuring ranges between 0 ... 500 N and 0 ... 20 kN
- Measurement accuracy < 1% F.S.</p>
- Normalized output signal 0 ... 10 V
- Stainless steel sensor
- Compact design
- Customer-specific versions possible from 20 pieces up

Application

This force measurement chain was developed for applications where a low cost solution is more important than achieving high levels of accuracy. The sensors strain gauge technology allows the measurement of static and dynamic forces. The load cell is also designed for applications that provide only little space due to its compact design. These properties, together with the sensors dust protection, make the measuring chain suitable for a wide range of applications, such as

- Industrial manufacture
- Manufacture of customized machinery
- Geological investigations
- Motor vehicle engineering
- Commercial agriculture
- Bridge building

Description

The body of the sensor is a flat, cylindrical disk, into which a domed force application knob is integrated. It is important that the force is applied axially to the center of the sensor. The domed form, however, minimizes the effect of a force that is not exactly axial.

A full-bridge strain gauge is used as the measuring element inside the sensor, by means of which the force to be measured is converted into a proportional electrical voltage.

The in-line amplifier increases this voltage from 0 up to 10 V. The surface against which the sensor rests is important for the quality of the measurement. It should be ground. It must be sufficiently hard and thick and not deform under load.

Technical Data

Order Measuring		Dimensions [mm]							
Code	Range	A	В	øC	øD	E	F	øG	R
8532-5500	0 500 N	25	21	50	10	51	M 5 x 0,8 / 5 tief	42	50
8532-6001	0 1 kN	25	21	50	10	51	M 5 x 0,8 / 5 tief	42	50
8532-6002	0 2 kN	25	21	50	10	51	M 5 x 0,8 / 5 tief	42	50
8532-6005	0 5 kN	25	21	50	10	51	M 5 x 0,8 / 5 tief	42	50
8532-6010	0 10 kN	25	21	50	10	51	M 5 x 0,8 / 5 tief	42	50
8532-6020	0 20 kN	25	21	50	10	51	M 5 x 0,8 / 5 tief	42	50

Electrical values	
Excitation voltage:	15 30 V DC
Output voltage:	0 10 V
Output resistance:	440 Ω , nominal
Limit frequency:	1 kHz
Isolation resistance (sensor):	> 2000 MΩ
Bridge resistance (sensor):	350 Ω , nominal
Power consumption:	max. 0.3 VA
Environmental conditions Sensor	
Dense of ensure the second such was	

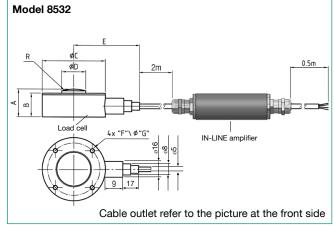
Range of operation temperature: $-20 \ ^{\circ}C \dots 80 \ ^{\circ}C$ Range of nominal temperature: $-10 \ ^{\circ}C \dots 40 \ ^{\circ}C$ Influence of temperature to zero signal: $\leq 0.02 \ ^{\circ}K \ Rdg./K$ Influence of temperature to measurement signal: $\leq 0.02 \ ^{\circ}K \ Rdg./K$

IN-LINE amplifier

Ambient temperature:	0 °C 60 °C
Temperature coefficient:	< 0.1 % / 10 K

Mechanical values

Measurement accuracy:	< 1 % F.S.
Combined value consisting of non-lin	nearity, hysteresis and non-
repeatability in constant installation p	position.
Marchan and the second second from a	100.0/


Maximum static operational	force: 120 %	of nominal load
Dynamic forces:	up to 70 %	of nominal load
Material: sensor amplifier housing	stainless steel aluminium natural anodiz	ed with 2 x PG 7
Protection class according	to EN 60529: Sensor IN-LINE amplifier	IP60 IP67
Weight:	Sensor IN-LINE amplifier	approx. 250 g approx. 150 g
Mounting:		
Sensor	4 threaded holes on reference cycle G refer to table and dimensional drawing	
IN-LINE amplifier	cable clip, in scope of delivery	

Electrical connection

Shielded PVC cable:	bending pend protection, lengtl	ø 5 mm, 4 wires black coated radius ≥ 30 mm approx. 20 mm
Cable length between sensor	and amplifier:	2 m
Cable length between amplifier and open end:		
Wiring code of the IN-LINE ar red black white green	nplifier: excitation excitation signal output signal output	positive negative positive negative
Wiring code of the load cell c red black white green	able: excitation excitation measurement signal measurement signal	positive negative negative positive
Dimensions: sensor amplifier (L x ØD):		refer to table 120 x 25 [mm]
Caution!		

Do NOT open the screw joint at the cable outlet!

Dimensional drawing

The CAD drawing (3D/2D) for this sensor can be imported online directly into your CAD system.

Download via www.burster.com or directly at www.traceparts.com. For further information about the burster traceparts cooperation refer to data sheet 80-CAD-EN.

Order Information

Low-Cost load cell, measurement range 0 ... 5 kN with IN-LINE amplifier, output 0 ... 10 V Model 8532-6005

Signal processing

Supply units, amplifier and process control units like digital indicator model 9180 or sensor profibus module model 9221 refer to section 9 of the catalog.